Which Of The Following Sets Of Vectors Are Bases For R3? (Select All That Apply.)
Problem 579
Determine whether each of the following sets is a basis for $\R^3$.
          (a)          $S=\left\{\,  \begin{bmatrix}
          1 \\
          0 \\
          -1
          \end{bmatrix}, \begin{bmatrix}
          2 \\
          1 \\
          -1
          \end{bmatrix}, \begin{bmatrix}
          -2 \\
          1 \\
          4
          \end{bmatrix} \,\right\}$
          (b)          $S=\left\{\,  \begin{bmatrix}
          1 \\
          4 \\
          7
          \end{bmatrix}, \begin{bmatrix}
          2 \\
          5 \\
          8
          \end{bmatrix}, \begin{bmatrix}
          3 \\
          6 \\
          9
          \end{bmatrix} \,\right\}$
        
          (c)          $S=\left\{\,  \begin{bmatrix}
          1 \\
          1 \\
          2
          \end{bmatrix}, \begin{bmatrix}
          0 \\
          1 \\
          7
          \end{bmatrix} \,\right\}$
        
          (d)          $S=\left\{\,  \begin{bmatrix}
          1 \\
          2 \\
          5
          \end{bmatrix}, \begin{bmatrix}
          7 \\
          4 \\
          0
          \end{bmatrix}, \begin{bmatrix}
          3 \\
          8 \\
          6
          \end{bmatrix}, \begin{bmatrix}
          -1 \\
          9 \\
          10
          \end{bmatrix} \,\right\}$
                       Add to solve later
Add to solve later          
                            
Sponsored Links
Contents
- Problem 579
- Definition (A Basis of a Subspace).
- Solution.- (a) $S=\left\{\, \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix}, \begin{bmatrix} -2 \\ 1 \\ 4 \end{bmatrix} \,\right\}$
- (b) $S=\left\{\, \begin{bmatrix} 1 \\ 4 \\ 7 \end{bmatrix}, \begin{bmatrix} 2 \\ 5 \\ 8 \end{bmatrix}, \begin{bmatrix} 3 \\ 6 \\ 9 \end{bmatrix} \,\right\}$
- (c) $S=\left\{\, \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 7 \end{bmatrix} \,\right\}$
- (d) $S=\left\{\, \begin{bmatrix} 1 \\ 2 \\ 5 \end{bmatrix}, \begin{bmatrix} 7 \\ 4 \\ 0 \end{bmatrix}, \begin{bmatrix} 3 \\ 8 \\ 6 \end{bmatrix}, \begin{bmatrix} -1 \\ 9 \\ 10 \end{bmatrix} \,\right\}$
 
Definition (A Basis of a Subspace).
A subset $S$ of a vector space $V$ is called a basis if
- $S$ is linearly independent, and
- $S$ is a spanning set.
Solution.
Recall that any three linearly independent vectors form a basis of $\R^3$.
          (See the post "Three Linearly Independent Vectors in $\R^3$ Form a Basis. Three Vectors Spanning $\R^3$ Form a Basis." for the proof of this fact.)
          (a) $S=\left\{\,  \begin{bmatrix}
            1 \\
            0 \\
            -1
            \end{bmatrix}, \begin{bmatrix}
            2 \\
            1 \\
            -1
            \end{bmatrix}, \begin{bmatrix}
            -2 \\
            1 \\
            4
            \end{bmatrix} \,\right\}$        
                  Let us check that whether $S$ is a linearly independent set.
          Consider the linear combination
          \[x_1\begin{bmatrix}
          1 \\
          0 \\
          -1
          \end{bmatrix}+x_2 \begin{bmatrix}
          2 \\
          1 \\
          -1
          \end{bmatrix}+x_3\begin{bmatrix}
          -2 \\
          1 \\
          4
          \end{bmatrix} =\mathbf{0}.\] 	  This is equivalent to the matrix equation
          \[\begin{bmatrix}
          1 & 2 & -2 \\
          0 &1 &1 \\
          -1 & -1 & 4
          \end{bmatrix}
          \begin{bmatrix}
          x_1 \\
          x_2 \\
          x_3
          \end{bmatrix}=\mathbf{0}.\] 	  To find the solution, consider the augmented matrix.
          Applying elementary row operations, we obtain
          \begin{align*}
          \left[\begin{array}{rrr|r}
          1 & 2 & -2 &   0 \\
          0 &1 &  1 & 0  \\
          -1 & -1 & 4 & 0
          \end{array} \right] 	    \xrightarrow{R_3+R_1}
          \left[\begin{array}{rrr|r}
          1 & 2 & -2 &   0 \\
          0 &1 &  1 & 0  \\
          0 & 1 & 2 & 0
          \end{array} \right]\\[6pt] 	    \xrightarrow[R_3-R_2]{R_1-2R_2}
          \left[\begin{array}{rrr|r}
          1 & 0 & -4 &   0 \\
          0 &1 &  1 & 0  \\
          0 & 0 & 1 & 0
          \end{array} \right] 	    \xrightarrow[R_2-R_3]{R_1+4R_3}
          \left[\begin{array}{rrr|r}
          1 & 0 & 0 &   0 \\
          0 &1 &  0 & 0  \\
          0 & 0 & 1 & 0
          \end{array} \right].
          \end{align*}
          It follows that the solution is $x_1=x_2=x_3=0$.
          Hence $S$ is linearly independent.
          As $S$ consists of three linearly independent vectors in $\R^3$, it must be a basis of $\R^3$.
          (b) $S=\left\{\,  \begin{bmatrix}
            1 \\
            4 \\
            7
            \end{bmatrix}, \begin{bmatrix}
            2 \\
            5 \\
            8
            \end{bmatrix}, \begin{bmatrix}
            3 \\
            6 \\
            9
            \end{bmatrix} \,\right\}$        
        As in part (a), we determine whether the set $S$ is linearly independent or not by considering the following augmented matrix:
          \begin{align*}
          \left[\begin{array}{rrr|r}
          1 & 2 & 3 &   0 \\
          4 &5 &  6 & 0  \\
          7 & 8 & 9 & 0
          \end{array} \right] 	    \xrightarrow[R_3-7R_1]{R_2-4R_1}
          \left[\begin{array}{rrr|r}
          1 & 2 & 3 &   0 \\
          0 &-3 &  -6 & 0  \\
          0 & -6 & -12 & 0
          \end{array} \right]\\[6pt] 	    \xrightarrow{-\frac{1}{3}R_2}
          \left[\begin{array}{rrr|r}
          1 & 2 & 3 &   0 \\
          0 & 1 &  2& 0  \\
          0 & -6 & -12 & 0
          \end{array} \right] 	    \xrightarrow[R_3+6R_2]{R_1-2R_2}
          \left[\begin{array}{rrr|r}
          1 & 0 & -1 &   0 \\
          0 &1 &  2 & 0  \\
          0 & 0 & 0 & 0
          \end{array} \right].
          \end{align*}
          Thus, the general solution is $x_1=x_3$, $x_2=-2x_3$, where $x_3$ is a free variable.
          Hence, in particular, there is a nonzero solution.
          So $S$ is linearly dependent, and hence $S$ cannot be a basis for $\R^3$.
          (c) $S=\left\{\,  \begin{bmatrix}
            1 \\
            1 \\
            2
            \end{bmatrix}, \begin{bmatrix}
            0 \\
            1 \\
            7
            \end{bmatrix} \,\right\}$
                  
        A quick solution is to note that any basis of $\R^3$ must consist of three vectors. Thus $S$ cannot be a basis as $S$ contains only two vectors.
          Another solution is to describe the span $\Span(S)$.
          Note that a vector $\mathbf{v}=\begin{bmatrix}
          a \\
          b \\
          c
          \end{bmatrix}$ is in $\Span(S)$ if and only if $\mathbf{v}$ is a linear combination of vectors in $S$.
          Equivalently, the vector $\mathbf{v}$ is in $\Span(S)$ if and only if the system
          \[\begin{bmatrix}
          1 & 0 \\
          1  & 1 \\
          2 &7
          \end{bmatrix}
          \begin{bmatrix}
          x_1 \\
          x_2
          \end{bmatrix}
          =
          \begin{bmatrix}
          a \\
          b \\
          c
          \end{bmatrix}\] 	  is consistent.
          Let us consider the augmented matrix and reduce it by elementary row operations.
          \begin{align*}
          \left[\begin{array}{rr|r}
          1 & 0 & a \\
          1 & 1 &b \\
          2 & 7 & c
          \end{array}\right] 	  \xrightarrow[R_3-2R_1]{R_2-R_1}
          \left[\begin{array}{rr|r}
          1 & 0 & a \\
          0 & 1 &b-a \\
          0 & 7 & c-2a
          \end{array}\right]\\[6pt] 	  \xrightarrow{R_3-7R_2}
          \left[\begin{array}{rr|r}
          1 & 0 & a \\
          0 & 1 &b-a \\
          0 & 0 & 5a-7b+c
          \end{array}\right].
          \end{align*}
          Note that we obtained the $(3,3)$-entry by $c-2a-7(b-a)=5a-7b+c$.
          It follows that the system is consistent if and only if
          \[5a-7b+c=0.\] 	Thus, for example, the vector $\begin{bmatrix}
          1 \\
          0 \\
          0
          \end{bmatrix}$ is not in $\Span(S)$ as $5\cdot 1-7\cdot 0+0\neq 0$.
          Hence $\Span(S)$ is not $\R^3$, and we conclude that $S$ is not a basis.
          (d) $S=\left\{\,  \begin{bmatrix}
            1 \\
            2 \\
            5
            \end{bmatrix}, \begin{bmatrix}
            7 \\
            4 \\
            0
            \end{bmatrix}, \begin{bmatrix}
            3 \\
            8 \\
            6
            \end{bmatrix}, \begin{bmatrix}
            -1 \\
            9 \\
            10
            \end{bmatrix} \,\right\}$        
        The set $S$ contains four $3$-dimensional vectors. Hence $S$ is linearly dependent, and thus $S$ is not a basis.
                       Add to solve later
Add to solve later        
Sponsored Links
Which Of The Following Sets Of Vectors Are Bases For R3? (Select All That Apply.)
Source: https://yutsumura.com/determine-whether-each-set-is-a-basis-for-r3/
Posted by: crispnegards.blogspot.com

0 Response to "Which Of The Following Sets Of Vectors Are Bases For R3? (Select All That Apply.)"
Post a Comment